2012年10月26日星期五

Delano-Earlimart Irrigation District Variable Frequency Drive Study


TABLE OF CONTENTS



                                                                                                                                   Page



LIST OF FIGURES ............................................................................................................           iii



LIST OF TABLES ..............................................................................................................          iv



BACKGROUND ................................................................................................................              1



           Project Objectives ....................................................................................................       1



           Variable Frequency Drive (VFD) Concept ...............................................................                        2



           Benefits of VFDs .....................................................................................................        3



           Pump Station D-12 Configuration ............................................................................                  4



           Theoretical Energy Savings......................................................................................              5



           Background of VFDs and Payback ..........................................................................                     8



                     Performing an Economic Analysis ................................................................                    8



                     Key Definitions ............................................................................................        8



SITE INVESTIGATIONS ..................................................................................................                  11



           Data Evaluation Procedure ......................................................................................             14



           Highlights of the Monitoring ....................................................................................            15



DISCUSSION.....................................................................................................................         19



           Actual Acre-Feet Pumped and Historical Water Deliveries .......................................                              19



           Managing the VFD Operation ..................................................................................                19



DEVELOPMENT OF GENERALIZED RECOMMENDATIONS FOR VFD



INSTALLATIONS ...........................................................................................................               20



ENHANCEMENT OF THE PRESENT VFD OPERATION ............................................                                                   21



CONCLUSIONS ..............................................................................................................              22



REFERENCES .................................................................................................................            23



CEC - DEID VFD Report                                               i                          Irrigation Training and Research Center


----------------------- Page 4-----------------------

ATTACHMENTS:                  STATION         D-12



     Attachment A:            DEID and SCE Data.......................................................................      A-1



     Attachment B:            Actual Pump Operation - Data Logger (6/02/94-10/25/94) .............                          B-1



     Attachment C:            Data Logger Summary (Hours, kWH, AF/day) ...............................                      C-1



     Attachment D:            Ideal Pump Sequencing to Meet CFS Demand (9/1/91-8/31/93) .....                               D-1



     Attachment E:            Historical Pump Sequencing Based on Pumping Hours (9/1/91-



                              8/31/93).......................................................................................... E-1



     Attachment F:            Pump Selection Criteria ..................................................................    F-1



     Attachment G             Estimating the Payback ...................................................................    G-1



     Attachment H:            Requirements for AC VFD Installations ..........................................              H-1



     Attachment I:            Site Photos ..................................................................................... I-1



CEC - DEID VFD Report                                           ii                       Irrigation Training and Research Center


----------------------- Page 5-----------------------

                               Delano-Earlimart Irrigation District

                                    Variable Frequency Drive Study



LIST OF FIGURES



                                                                                                              Page



Figure 1.       Delano-Earlimart Irrigation District - CEC Project location map ...................                1



Figure 2.       Diagram of VFD concept. ............................................................................. 3



Figure 3.       Pumping station layout. ................................................................................. 5



Figure 4.       Key measurement points at Station D-12 Pump #3. .......................................           13



Figure 5.       Discharge head and TDH versus GPM for D-12 Pump 3 (6/02/95-



                10/26/94)...................................................................................................... 16



Figure 6.       Input kW to motor versus GPM for D-12 Pump 3 (6/02/94-10/26/94). .........                        17



Figure 7.       kW/AF versus GPM for D-12 Pump 3 (6/02/94-10/26/94). ...........................                  17



Figure 8.       Pumping plant efficiency versus flow rate for D-12 Pump 3 (6/02/94-



                10/26/94)...................................................................................................... 18



Figure 9.       Pumping plant efficiency versus RPM for D-12 Pump 3 (6/02/94-10/26/94). .                         18



ATTACHMENTS



    Figure D.1.      Generation of D12 pump curve with existing pump.



    Figure D.2.      Generation of D12 pump curve with new pump.



    Figure E.1.      CFS pumped vs. cumulative days (9/91-8/92).



    Figure E.2.      CFS pumped vs. cumulative days (9/92-8/93).



    Figure I.1.      Station D12.     Pumps for the detailed study.



    Figure I.2.      Control panel for VFD at Station D12.



    Figure I.3.      Datalogger provided by SCE for data acquisition at Station D12.



    Figure I.4.      Flow meter and pressure sensor (above and to the right of the flow meter) used



                     at Station D12 for data collection.       The discharge pipe is for the VFD.



    Figure I.5.      Shaft RPM measurement device for the VFD pump at Station D12.



    Figure I.6.      Overflow stand at Station D12 to which the VFD was attached.                 The VFD



                     maintains a constant water level in the stand, below the overflow pipe seen on



                     the right hand side.



CEC - DEID VFD Report                                    iii                    Irrigation Training and Research Center


----------------------- Page 6-----------------------

                             Delano-Earlimart Irrigation District

                                  Variable Frequency Drive Study



LIST OF TABLES



                                                                                                       Page



Table 1.         Comparison of payback analysis (based on 9/1/91-8/31/93 data).................            6



Table 2.         Table summary of kWH consumed based on ideal and historical



                 sequencing from 9/1/91 to 8/31/93. ............................................................ 7



Table 3.         Sensor inventory used in data acquisition.................................................... 12



Table 4.         Comparison of variable to constant speed drive pump at D-12 Pump #3. ....                15



ATTACHMENTS



    Table A.1.       Daily water deliveries from DEID.



    Table A.2.       Historical hours of operation recorded by DEID.



    Table B.1.       Selected instantaneous data from data logger (4 times per day) with total



                     dynamic head (TDH), water horsepower (WHp), and efficiencies.



    Table C.1.       Summary of data recorded by datalogger.



    Table D.1.       Determination of ideal input power with existing pump.



    Table D.2.       Ideal sequencing without VFD.



    Table D.3.       Ideal sequencing with VFD and existing pump.



    Table D.4.       Ideal input power with existing pump.



    Table D.5.       Determination of ideal input power with new pump.



    Table D.6.       Ideal sequencing with new pump and VFD.



    Table D.7.       Ideal input power with new pump.



    Table E.1.       Historical pumping hours for Station D-12 (9/1/91-8/31/93).



CEC - DEID VFD Report                                 iv                   Irrigation Training and Research Center


----------------------- Page 7-----------------------

BACKGROUND



This   report   was   conducted   to   study   the   pump   station   operation   at  Delano-Earlimart   Irrigation



District (DEID) after the installation of a variable frequency drive (VFD) control.           The district is



currently   involved with   the   California   Energy   Commission’s   low-interest   loan   program   for   the



installation of VFD units on their pump stations near Delano, California.



Delano-Earlimart Irrigation District is a special water district organized under Division 11 of the



California Water Code and encompasses 56,500 acres in Southern Tulare County and Northern



Kern County.     DEID has 18 individual pumping stations.         DEID installed VFDs on key pumps at



three   different   plants   (D-3,   D-12,   and   D-14). See   Figure   1   for   a   description   of   the   project



location.



         Highway 99



              Earlimart



                                                  Road 192



           Avenue 24



        County Line Road



                                        PS 3    PS 12  PS 14



                               Delano

                                                                      North



         Figure 1.   Delano-Earlimart Irrigation District - CEC Project location map.



Project Objectives



In order to develop specific recommendations on the operation and use of the VFDs, a detailed



evaluation was performed on Pump Station 12.          This project had the following specific objectives:



CEC - DEID VFD Report                                  1                    Irrigation Training and Research Center


----------------------- Page 8-----------------------

         •   Estimate 1991-1993 energy savings and payback period for going to VFD based on

             ideal pump sequencing and historical (actual) pump sequencing.



         •   Collect data regarding existing pump operation at Station D-12.



         •   Examine   current   VFD   performance   and   compare   it   to   single   speed   hydraulic   tests

             conducted by Southern California Edison.



         •   Develop guidelines for pump sequencing and choosing which pump to automate with

             VFD.



Variable Frequency Drive (VFD) Concept



Variable   frequency   drives   (VFDs)   were   incorporated   into   key   pumps   at   pumping   stations   and



were intended to be capable of varying the flow of a pump.              The objective is to minimize wasted



energy at the pumping station associated with pumping water to meet customer water demand.



The VFD system used at Station D-12 consists of four basic components:



         •   Pump and motor set



         •   Variable frequency drive



         •   Process controller



         •   Level sensor



Figure 2 shows how each of the components are connected and used.                     The desired set point is



established and is typically lower than the historical operation level for the TDH.                The value is



lower because the water is not required to spill as was done historically.



CEC - DEID VFD Report                                   2                     Irrigation Training and Research Center


----------------------- Page 9-----------------------

                        Process controller                                            Level sensor provides

                        provides output signal                                        signal proportional

                        based on relationship                                         to water level

                        between target set point

                        and level signal               Shielded cable



                                 Process

                                 Controller                   Desired

                                                              water level



                                           Speed

                                           signal

                                                           Water-cooled

                                                           enclosure



                                    VFD                                          STANDPIPE



                                                                     Valve

                                                                  (keep open)



                        Speed of pump directly

                        proportional to speed signal       Pump



                                       Figure 2.    Diagram of VFD concept.



The VFD system automatically maintained a desired water level in the discharge standpipe.                              The



lower set point has the potential to lower the energy consumption of the pumping station slightly.



Maintenance   of   the   set   point   was   accomplished   by   mounting   a   water   level   sensor   inside   the



standpipe that works in conjunction with a process controller.                  The process controller generates a



signal that controls the output of the VFD on one of the pumps.                     Because the speed of the pump



can be varied, this VFD pump may also be referred to as an adjustable speed drive (ASD) pump.



This pump, used by itself or in conjunction with any other pump, provides full flow variability up



to   the   capacity    of   the  plant.    With     this  control,    the  objective     of  reducing     wasted    energy



consumption can be met.



Benefits of VFDs



Using the VFD has the following benefits:



          •   Conserves energy by reducing pump speed to produce lower flow.



          •   Eliminates   the   need   for   the   flow   control   valve   at   the   pump   station;   thus,   generates

              reductions in amount of energy used by the pump.



CEC - DEID VFD Report                                        3                       Irrigation Training and Research Center


----------------------- Page 10-----------------------

         •    Provides cost-saving benefits, such as reduced electrical and mechanical maintenance.



         •    Improves reliability and pump-control strategies.



Pump Station D-12 Configuration



Pumping Station D-12 consists of two sets of pumps.                   One set of pumps supplies water to the



lateral pipeline system for the water users, and pumps conveying water to another reservoir.                      This



study is based on data at Station D-12 for which DEID retrofitted the panel for Pump 3 at Station



D- 12    for   VFD   control   (see   Fig.   3). The   overall   pumping   plant   efficiencies   were   provided   by



Southern California Edison (SCE) from single speed hydraulic tests.



The station under evaluation consists of four pumps connected in parallel with a common output



manifold hooked to a standpipe, approximately 30 feet tall.                This standpipe has an overflow pipe



which returns excess water to a common sump.                By turning on a combination of pumps to fill this



standpipe to overflow level, a variable and uninterrupted flow of water to the pipeline system for



the customer is attained.



For example, water demand for a specific day might be 8.7 cubic feet per second (cfs):



                  This demand would be met by turning on the 6.1 cfs pump and the



                  2.9  cfs   pump,   thereby   producing   9.0  cfs.      The   standpipe  fills   to



                  overflow   height   and   the   excess   0.3  cfs   is   returned   to   the   sump.



                  Energy is wasted by pumping excess water to the overflow.



CEC - DEID VFD Report                                      4                      Irrigation Training and Research Center


----------------------- Page 11-----------------------

                                                                       (variable flow)

                                                         5.7 cfs            6.1 cfs             2.9 cfs         2.1 cfs



                                                   #4     25 Hp        #3     25 Hp       #2     15 Hp      #1    15 Hp



                                                                      VFD



                                                                  Controller

            Overall Pumping Plant Efficiency

            (from SCE single-speed                                                                                           Pump #3



             hydraulic tests):



               25 Hp #4:  59.1%



               25 Hp #3:  62.5%



               15 Hp #2:  54.4%



               15 Hp #1:  41.6%



                          Standpipe



                                                                      VFD Controller Cabinet Temperature



                                                                          Transformer Cabinet Temperature



                                                 Figure 3.       Pumping station layout.



Theoretical Energy Savings



Estimates   were   made   by   ITRC   for   Stations   D-3,   D-12,   and   D-14   based   on   water   demand   and



pumping hours from 9/1/91 to 8/31/93.                          The following focuses only on the savings at Station D-



12.    Table 1 illustrates two methods of payback analysis.



CEC - DEID VFD Report                                                     5                            Irrigation Training and Research Center


----------------------- Page 12-----------------------

              Table 1.   Comparison of payback analysis (based on 9/1/91-8/31/93 data).



                                     IDEAL SEQUENCING                     HISTORICAL SEQUENCING



     CFS Used                        CFS Demand                           CFS Demand



     kW Consumed                     kW/pump       based   on   an  ideal kW/pump      rating  directly  from

                                          pump seq. to fulfill CFS             SCE



                                     Pumps 1-4 are sequenced so that

                                          the   CFS   capacity   per   pump

                                          (SCE)    is  then   totaled  to

                                          meet CFS demand.



     Overspill?                      some overspill                       unknown



     Pumping Hours                   24 hrs/day basis                     actual recorded pumping hrs



                                     EXISTING           NEW               EXISTING          NEW

                                     PUMP               PUMP              PUMP               PUMP



     Annual kWH without VFD           128,802           128,802           115,415            115,415



     Annual kWH with VFD              109,698            93,377           104,764             96,095



     Annual kWH Savings                19,104            35,425            10,651             19,320



     Annual Savings                  $ 2,177             $ 4,038          $ 1,214            $ 2,203

         ($.114/kWH)

     VFD Cost + pump

     (if applicable)                 $18,342            $ 23,342          $18,342            $ 23,342



     Simple                          8.4                5.9               15.1               10.6

     Payback (years)



Table 1 indicates that the actual pumping hours (historical) were significantly less than the ideal



situation that should have occurred to achieve a predetermined flow rate.               This was based on the



lower  annual kWH   without   the   VFD.       This   means   that   the   CFS   demand   was   not   met,   and   the



customer received less water than the recorded CFS deliveries.             Thus, Table 1 shows that savings



are highly sensitive to how the pumps are sequenced.



CEC - DEID VFD Report                                   6                     Irrigation Training and Research Center


----------------------- Page 13-----------------------

      Table 2.       Table summary of kWH consumed based on ideal and historical sequencing from

                     9/1/91 to 8/31/93.



                                      PUMPING STATION:                 D-12 (Pumps 1-4)

                                                                                                 Monthly Average

                                             kWH                                                    kWH/AF

                                             Ideal                     Historical                   Ideal                Historical



                                    With                 Without       Without                With           Without     Without

                                    VFD                  VFD           VFD                    VFD            VFD         VFD

              AF          Existing       New                                         Existing    New

Date          Demand      Pump           Pump                                        Pump        Pump



Sep-91         267        9,758           7,227          12,931        11,782        27.1         27.1        48.5        44.2

Oct-91         287         10,540         7,724          13,927        13,362        26.9         26.9        48.5        46.5

Nov-91         355         12,871         8,920          16,277        14,214        25.1         25.1        45.9        40.0

Dec-91        0           0               0              0             0             0.0         0.0         0.0         0.0

Jan-92        0           0               0              0             0             0.0         0.0         0.0         0.0

Feb-92        20           1,146          1,181          1,181         1,033         58.7         58.7        58.7        51.3

Mar-92        7           498             590            590           517           80.7         80.7        80.7        70.6

Apr-92         448         16,061         14,034         18,494        16,625        31.3         31.3        41.3        37.1

May-92         525         17,641         15,924         19,790        16,451        30.3         30.3        37.7        31.3

Jun-92         597        21,708          18,917         23,916        17,798        31.7         31.7        40.1        29.8

Jul-92         365         13,381         10,948         15,643        14,697        30.0         30.0        42.9        40.3

Aug-92         188        7,734           6,606          9,586         8,331         35.2         35.2        51.1        44.4



Subtotals     3,059        111,338        92,072         132,336       114,810

Ave.                                                                                 36.4         30.1        43.3       37.5



Sep-92         124        5,551           5,067          7,584         5,873         44.9         41.0        61.4        47.6

Oct-92        75          3,939          4,249           5,201         4,759         31.9         34.4        42.1        38.5

Nov-92        42           1,867          1,877          2,606         659           15.1         15.2        21.1       5.3

Dec-92        0           0               0              0             0             0.0         0.0         0.0         0.0

Jan-93        0           0               0              0             0             0.0         0.0         0.0         0.0

Feb-93        21           1,161          1,181          1,181         517           9.4         9.6         9.6         4.2

Mar-93        44          2,254          2,165           2,518         1,841         18.3         17.5        20.4        14.9

Apr-93         304         11,220         10,222         13,330        12,867        90.9         82.8       107.9        104.2

May-93         549         19,631         16,811         22,646        22,405        159.0       136.1       183.4        181.4

Jun-93         695        24,727         21,421          27,024        26,539        200.2       173.4       218.8       214.9

Jul-93         765        27,657         24,200          30,233        28,278        223.9       196.0       244.8       229.0

Aug-93         280         10,050         7,490          12,945        12,281        81.4         60.6       104.8        99.4



Subtotals     2900         108,057        94,681         125,268       116,020

Ave.                                                                                 37.3         32.6        43.2       40.0



2 Yr Totals   5959        219,395         186,753        257,604       230,830



Yrly Ave      2980        109,698         93,377         128,802       115,415       36.8         31.3        43.2       38.7



 CEC - DEID VFD Report                                            7                        Irrigation Training and Research Center


----------------------- Page 14-----------------------

Background of VFDs and Payback



Perceived or actual improved energy efficiency is undoubtedly the greatest stimulus towards the



use of VFDs, but it is not the only one.       It is the connection between energy efficiency and better



process  control which often fuels the interest in VFDs  (Process  Engineering,  1994).              The  VFD



controller can be used to modify an existing, single speed motor operation, as at DEID.



Performing an Economic Analysis.            Variable speed systems have the potential to save energy in



many installations.     However, they do not necessarily save money.            The total cost of equipment



and life cycle should always be analyzed for applications.           The estimates of energy savings must



account   for   the   hours   of   operation   of   various   speeds,   the   pump   TDH   and   flow   rate   at   those



speeds, and the total pumping plant efficiency at those speeds.          In general, the pump impeller and



motor   efficiencies   are   considerable   lower   at   low  RPMs   than   at   higher  RPMs.   This   drop   in



efficiency will reduce the payback efficiency.



As part of the work done at DEID for the CEC, the ITRC developed two sets of guidelines for



new installations.   One is related to the selection of the proper pump to automate with a VFD; the



other guideline relates to the computation of annual savings in power.              These are included in a



subsequent section of this report.



Key Definitions.     The following are the key definitions for this report:



         Affinity   laws.  These   are   the   relationships   between   speed   ratios,   pressure   ratios,   and



                 horsepower ratios for centrifugal pump applications:



                  Q1     N1         H 1      N 1 2          hp1      N 1 3



                             ;                       ;                    

                  Q2     N2         H2       N 2            hp2      N 2



                                                                                                       (1)



                  Q flow (GPM) ,     N speed (RPM) ;       H  head (ft ) ;   hp   horsepower



             **  It   should   be   noted   that   the   affinity   laws   are   only   used   to   develop   a   new   pump



                 curve for different RPMs.      The actual HP used by the pump when changing RPMs



                 will depend on where the system curve intersects the pump curve.              In determining



                 power savings, the system curve must be taken into account.



         Pump curve.      A graph showing the relationship between TDH (total dynamic head) and



                 flow rate at a single RPM.      The efficiency of the impeller is also shown at key flow



CEC - DEID VFD Report                                  8                     Irrigation Training and Research Center


----------------------- Page 15-----------------------

                  rates.   In   general,   as   the   flow   rate   increases,   the   TDH   delivered   by   the   pump



                  decreases.    The curve will be different at each RPM.



         System     curve.    A    graph   showing     the  relationship    between    the  TDH     required    by  an

                  irrigation system and the flow rate through the system.               As the flow rate through



                  the system increases, the TDH required increases.             For most cases, the pump curve



                  will   only   intersect   the   system   curve   at   one   point   (this   assumes   one   RPM   of   the



                  pump).



         Head.    This refers to pressure given in units of feet of water column or pounds per square



                  inch (PSI).



         Static head.    The static head is the elevation change between the source water level and



                  the discharge point.       The pump must deliver a TDH greater than the static head



                  before water will begin to flow.



         Friction.   The friction is the pressure loss due to the friction of the water moving against



                  the pipe and fittings.



         Drawdown.       The drop in the source water level once pumping starts.



         Discharge pressure.       The pressure (head) at the discharge point.          For example, a sprinkler



                  may   have   a   discharge   pressure   of   50-60  psi.     An    open   pipe   has   a  discharge



                  pressure of 0 psi.



         Total Dynamic Head (TDH).            The TDH is the pressure that the system will impose on the



                  pump at a particular flow rate.       This is simply a sum of the static head, the friction,



                  drawdown, and the discharge pressure.            On the type of pump stations analyzed at



                  DEID, the TDH remains relatively constant through the range of flow rates.                    This



                  is   because   the   static   head   is   the   greatest   component   in   the   TDH. The   piping



                  system is of a large diameter and short in length, so there is very little friction loss.



                  Also,   there   is   no drawdown.       In   other   words,   the  system    curve   is  fairly  flat



                  (horizontal).



         Pumping plant efficiency.        This is the efficiency of the complete pumping plant, including



                  the VFD panel, the motor, and the impeller/bowl assembly.                It is computed as:



                                     Water Horsepower

                           PPE =                              x 100

                                     Input Horsepower



CEC - DEID VFD Report                                     9                      Irrigation Training and Research Center


----------------------- Page 16-----------------------

                                  where



                                                            GPM * TDH

                                  Water Horsepower =            3960



                                  with TDH measured in feet of pressure, and



                                  Input Horsepower = measured at the meter



        Maximum GPM.          The maximum actual flow rate (gallons per minute) developed by the



                 pump.    This   was   obtained   from   SCE   (Southern   California   Edison)   single   speed



                 pump tests.



         Operating scenario.  This is the percent time at a certain flow rate.



CEC - DEID VFD Report                                  10                   Irrigation Training and Research Center


----------------------- Page 17-----------------------

SITE INVESTIGATIONS



The examination of the DEID VFD applications concentrated around one site - D12.                        An initial



meeting was  held with DEID personnel, employees  from  Turnipseed  Electric  of Delano  (which



installed the equipment), and SCE energy specialists.            At that time, several items of interest were



defined:



         •    Since the efficiency of the pump itself had not been considered, it was determined that



             more information about the pump characteristics was needed.



         •   The actual payback of the unit was a primary concern of DEID.



         •   This project provided SCE with an opportunity to examine the details of operation of



             a VFD for a whole irrigation season.



After   that   meeting,   the   pumps   were   evaluated   for   flow   rate,   TDH,   and   efficiency. SCE   also



arranged for the installation of a complete data collection and remote monitoring system at plant



D12.     SCE     contracted    with  Severson     Company,      Inc.  for  the  installation   of  equipment     and



software.    The   ITRC   specified   what   equipment   was   needed,   and   the   required   accuracy   of   that



equipment.     The ITRC also participated in the installation of the equipment.                SCE arranged for



the ITRC to obtain the data from Severson.           Table 3 is a listing of the primary components of the



data   collection   system.    Data   was   recorded   in  15   minute   intervals.   Operations   for   3   months



(6/2/94-10/26/94) were used in this study.



CEC - DEID VFD Report                                    11                     Irrigation Training and Research Center


----------------------- Page 18-----------------------

                         Table 3.  Sensor inventory used in data acquisition.

   DATA COLLECTION                     UNITS         EQUIPMENT/NOTES



              Data logger                            Campbell Scientific Model 21 XL

                                                       with Modem and Cellular Phone Interface

                                                        Sample Rate:   for this project, 1 per

                                                       second

   Flow              Pump 3            GPM           Flow   meter

                     (VFD)                             Model:    LP-3    Serial: 934923

                                                        Size: 12"

                                                       Pulse:  10pps @ 3000 GPM

                                                       Pipe size calibration:  11.938"

                                                       Calibration ratio:

                                                                 New pipe Area        144.1 in2

                                                       Ratio =                     =

                                                                Calibration Area      11.9 in2

                                                                                    = 1.287:1

                                                       Therefore:

                                                          Pulse 10 pps @ 3000 x 1.287 GPM

                                                           = 10 pps @ 3861 GPM



   Motor Speed       Pump 3            RPM           Pulse



   Power             Pumps 1 - 4       kW            Error in Pump 3 (VFD):      1.5%

                                                                      (1.6 % Efficiency offset)

   Pump Pressure     Pump 3            ft            Pressure Transducer Omega

                                                       Model:    PX 615       Serial: 413292

                                                       Range:   30 psi         Error: 1%

                                                       Current Loop Installation

                                                       Input:  10-30v          Output:  4-20 Ma

   Temperature       Into Pump 3       oC            Type "T" Thermocouple

                     Out of Pump 3

                     VFD

                     Transformer

   Water Level       Above             ft            Pressure Transducer IP-DC

                     Transducer                        Model:    5PSI6

                                                     Differential PTX 165-0857



Figure 4 shows the location of the data collection components used for this study.           The critical



dimensions of the measurement points are also shown.



CEC - DEID VFD Report                               12                  Irrigation Training and Research Center


----------------------- Page 19-----------------------

                        11'- 2" Flow Meter



                        10'- 2" Pressure Transducer



                                       D

                                       E                                     A

                                                     B

                                                                          A

      F



                                                                                                       Standpipe



                                                                          A



                                  SECTION A-A                        C             A   Flow meter

                        Area

                                                                                   B   Pump pressure transducer

                    144.1 sq. in.

                                                                                   C   Water height transducer



                                                                                   D   Motor air temperature out



                                                                                   E   Motor air temperature in



                                                                                   F   Motor RPM pick-up



                         Figure 4.      Key measurement points at Station D-12 Pump #3.



The   purpose   of   collecting   data   is   to   evaluate   VFD   pump   operation   and   performance.                        VFD



performance   and   its   comparison   to   values   generated   from   SCE   single   speed   pump   tests   are



represented in the form of graphs:

           •    Discharge head and Total Dynamic Head (TDH) vs. GPM.

           •    kW to motor vs. GPM.

           •    kWH/AF vs. GPM.

           •    VFD panel efficiency vs. kW to motor.

           •    Pumping Plant Efficiency (PPE) vs. GPM.

           •    Pumping Plant Efficiency (PPE) vs. RPM.



To compare the VFD pump operation and performance to that of the constant speed drive pumps,



values generated from SCE single-speed pump tests were designated as data points on the Pump



#3 curves.



CEC - DEID VFD Report                                              13                        Irrigation Training and Research Center


----------------------- Page 20-----------------------

Data Evaluation Procedure



The following information regarding Station D-12 was gathered:



    1.  Water delivery records and hours of pump operation from DEID:

        a.  Historical (9/1/91-8/31/93)

        b.  With VFD (current)



    2.  Data from data logger:

        a.  Pumping hours and kilowatts (kW) consumed for each pump.

        b.  Pump #3 (VFD)

             - Flow rate (GPM)

             - Speed (RPM).

             - Water pressure (ft).

             -  kW into VFD panel, kW into motor.

             - Temperatures



    3.   Single speed pump hydraulic tests from Southern California Edison (SCE).



    4.  Estimated cost of VFD conversion from contractor.



Observations and Results were represented by:



    1. Estimated 1991-1993 energy savings based on:

        a.  Ideal pump sequencing

        b.  Historical (recorded) pump sequencing



    2. Actual operation of the chosen VFD Pump (#3) is represented by:

        a.  Graphs of GPM, RPM, and water pressure versus time.            (6/2/94-10/2/94)

        b.  Average operating flow rate, pumping plant efficiency, and kWH/AF.



    3.  Comparison of VFD performance to that of SCE single speed pump tests:

        a.  Pumping Plant Efficiency (PPE) vs. GPM.

        b.  PPE vs. RPM.

        c.  VFD panel efficiency vs. kW to motor.

        d.  kW to motor vs. GPM.

        e.  Discharge head and TDH vs. GPM.

        f.  kWH/AF vs. GPM.



CEC - DEID VFD Report                                 14                   Irrigation Training and Research Center


----------------------- Page 21-----------------------

Highlights of the Monitoring



Attachment   B   includes   current   operation   of   Station   D-12   from   6/02/94   to   10/26/94   (see   Table



B.1).  Key factors to look at regarding the VFD pump (#3) were flow rate (GPM), speed (RPM),



and water pressure (P1) (see Figs. B.1-B.21).



DEID selected the proper pump for VFD conversion based upon the following summary:



         Table 4.   Comparison of variable to constant speed drive pump at D-12 Pump #3.

                                 Constant Speed Drive          Variable Frequency

                                                               Drive

                                 SCE test                      existing operation

                                 (8/10/93)                     (6/02/94-10/26/94)

                                                               Average               Range

   Discharge Head, ft            16.4                          15.3                 11.0 - 15.8

    Total Dynamic Head, ft       20.5                          21.8                 18.8 - 34.2

    % of Maximum GPM             100                           72                    25  - 100

   Flow Rate, GPM                2735                          1994                  675 - 2725

    Speed, RPM                   1184                          1046                 780 - 1183

   kW input to motor             16.9                          11.2                  6.6 - 16.2

   kW input to VFD Panel         --                            11.3                 6.9 - 16.6

   kW per Acre-Ft                34                            34.9                 30.1 - 57.9

   VFD Panel Efficiency %        --                            98                   94 - 99

    Overall    Pumping     Plant

   Efficiency (PPE) %            62.5                          62.0                 35.0 - 71.0



One of the questions regarding a VFD operation related to what the average flow rate would be.



At    D-12,     the   average    operating    flow    rate   was    72%     of   the   maximum       capacity.



CEC - DEID VFD Report                                 15                    Irrigation Training and Research Center


----------------------- Page 22-----------------------

The   following   figures   represent   current   VFD   pump   performance.                                 SCE   test   values   for   Pump   1



through 4 are designated with an "X" and labeled as P-1, P-2, P-3, and P-4.                                               The ITRC included



some additional factors in the computation of the VFD, such as column friction.



The   discharge   head   of   the   VFD   pump   should   remain   fairly   constant   if   the   pump   is   operated



properly.        In this piping system, there is very little difference in friction with flow rate changes,



since the pipes have a large diameter and are short in length.                                    In Figure 5, the discharge head can



be seen to remain fairly constant, but suddenly drops off near 2,600 GPM.                                                This occurs because



the   pump   is   at   100%   RPM,   and   the   flow   rate   leaving   the   standpipe   is   greater   than   the   pump



capacity   --   the   water   level   in   the   stand   drops   (i.e.,   the   discharge   pressure   of   the   pump   drops).



Another example of this is seen in Figure B.4 (Attachment B) where the pump was at maximum



flow rate while the pressure continued to drop.



          26



          24



                                                                                      TDH

          22



                                                                    P-2                                                 P-4

                                                                                                                                     P-3

                                                    P-1                X                                                   X       X

          20

                                                       X



          18



                                                                                Discharge Head                           P-4      P-3

                                                                    P-2

                                                     P-1                                                                    X       X

          16

                                                                       X

                                                       X



          14



          12



          10



           8



               0      200      400     600      800     1000    1200     1400    1600     1800    2000     2200    2400     2600    2800     3000



                                                                      Flow Rate (GPM)

               Note:  X is SCE test data (8/10/93),



                      for Pumps 1-4                                                                                                                Fig



           ure 5.     Discharge head and TDH versus GPM for D-12 Pump 3 (6/02/94-10/26/94).



CEC - DEID VFD Report                                                      16                            Irrigation Training and Research Center


----------------------- Page 23-----------------------

           18



                                                                                                                                   P-4       P-3

           17

                                                                                                                                       X        X



           16



           15



           14



           13



           12



           11



           10

                                                                           P-2



                                                                             X

            9

                                                         P-1



                                                           X

            8



            7



            6



                0       200      400       600      800     1000      1200     1400     1600      1800     2000     2200      2400     2600     2800     3000



                                                                            Flow Rate (GPM)

                Note:  X is SCE test data (8/10/93)



                Figure 6.          Input kW to motor versus GPM for D-12 Pump 3 (6/02/94-10/26/94).



            60.00



            56.00



            52.00



                                                                  P-1



            48.00                                                  X



            44.00



                                                                                   P-2

            40.00

                                                                                    X



                                                                                                                                              P-4



            36.00                                                                                                                               X

                                                                                                                                                        P-3



                                                                                                                                                         X



            32.00



            28.00



            24.00



            20.00



                     0       200       400      600       800      1000      1200     1400      1600      1800      2000     2200      2400      2600     2800      3000



                                                                                    Flow Rate (GPM)



                     Note:   X is SCE test data (8/10/93)                                                                                                                  Fig



                             ure 7.       kW/AF versus GPM for D-12 Pump 3 (6/02/94-10/26/94).



CEC - DEID VFD Report                                                                   17                                Irrigation Training and Research Center


----------------------- Page 24-----------------------

          80



          70



          60



          50



          40



          30



          20



          10



           0



               0      200     400      600     800     1000     1200    1400     1600    1800    2000     2200    2400     2600    2800     3000



                                                                     Flow Rate (GPM)



              Note: X is SCE test data (8/10/93)



      Figure 8.        Pumping plant efficiency versus flow rate for D-12 Pump 3 (6/02/94-10/26/94).



          80



          70



                                                                                                                                  P-3     X

          60



          50



          40



          30



          20



          10



           0



             600                   700                  800                  900                 1000                  1100                 1200



                                                                       Speed (RPM)



              Note: X is SCE test data (8/10/93)



         Figure 9.        Pumping plant efficiency versus RPM for D-12 Pump 3 (6/02/94-10/26/94).



CEC - DEID VFD Report                                                       18                             Irrigation Training and Research Center


----------------------- Page 25-----------------------

DISCUSSION



The following observations were made.



Actual Acre-Ft Pumped and Historical Water Deliveries



The acre-ft pumped and recorded by the data logger (Tables C.1.1-C.2.2) closely matched DEID



historical daily water deliveries (Tables A.1.1-A.1.2) for the months of June and July 1994..              This



supports     the  reliability  of  using   the  collected   data   values   for  determining     current  pump



performance and estimating energy savings.



Managing the VFD Operation



In several cases the data shows that the VFD pump reached its maximum capacity at 1,184 rpm,



and   the   water   level   in   the   stand   continued   to   drop   significantly. For  example,  in  Fig.  B.4



(Attachment   B),   Pump   #3   is   operated   at   the   maximum   RPM   of   1,183   RPM   from   6/29/94   to



7/2/94.   That problem can be solved if another pump is turned on to supplement the VFD flow



rate.  Remote monitoring and/or automation of all of the pumps at the station provide a simple



remedy.



From   8/22/94   -   10/26/94   (Figs.   B.12   -   B.21),   there   were   no   significant   fluctuations   in   water



pressure.   The VFD pump covered a wide range of operating flow rates from 700 GPM to 2725



GPM.



The   pump   chosen   for   VFD   was   the   proper   pump   to   automate.   It   was   the   correct   size   (see



Guideline #1 in the next section), and it had a reasonably good efficiency (62%).



CEC - DEID VFD Report                                  19                    Irrigation Training and Research Center


----------------------- Page 26-----------------------

DEVELOPMENT OF GENERALIZED

RECOMMENDATIONS FOR VFD INSTALLATIONS



As a result of the work at DEID, three sets of guidelines were developed for the CEC so that it



can assist others with the proper selection of VFD pumps.



Guideline #1 -          An explanation of which pump should be controlled by a VFD if more than



                         1 pump exists at a site, and what characteristics that pump should have (see



                        Attachment F)



Guideline #2 -          The    recommended      procedure   for  estimating  the  annual  cost  (payback)



                        which will occur if a VFD is to be installed (see Attachment G).



Guideline #3 -          The    proper   hardware   that  should   be  used  in  a  new   installation  (see



                        Attachment H).



CEC - DEID VFD Report                               20                   Irrigation Training and Research Center


----------------------- Page 27-----------------------

ENHANCEMENT OF THE PRESENT VFD OPERATION



The following recommendations have been given to DEID regarding the VFD installation at D-



12:



1.  Renovate the existing VFD pump with a new impeller/bowl assembly.                    The ITRC has worked



    with   DEID   and   various   pump   manufacturers   to   locate   a   suitable   pump.    This   included   the



     development of written pump specifications by the ITRC.              DEID is presently in the process of



    locating a suitable pump.       DEID has found that care must be taken with some pump company



     employees - in spite of written specifications, they may recommend the incorrect pump for an



    installation, and may be unfamiliar with their own products and how they can be applied in



    VFD installations.



2.  Install remote monitoring of the location.          This will enable district staff to know the status of



    water deliveries and pump operation without having to physically visit the site.              It will enhance



    the district's ability to provide more flexible deliveries (see next item).



3.  Allow farmers to personally operate their turnouts.            They should be required to request water



     deliveries   in   advance,   so   that   the   district   can   determine   if   there   will   be   sufficient   capacity.



    However,   an   automated   and   remotely   monitored   installation   will   allow   them   to   shut   off



    without   giving   advance   notice.     This   concept   was   explained   by   the   ITRC   and   the   DEID



    manager to the board members at an informal meeting.



4.  Automate the three other pumps at the D-12 overflow stand.                 They would be constant speed,



    but a Programmable Logic Controller, PLC (the same one as is presently used to control the



    VFD), can be used to automatically turn the pumps on and off as the flow rate demand from



    the VFD approaches the maximum or minimum limits.                 This is a standard type of operation for



    most municipal systems.



CEC - DEID VFD Report                                    21                     Irrigation Training and Research Center


----------------------- Page 28-----------------------

CONCLUSIONS



The following are the main conclusions or results from this project:



1.   The payback period is longer than was anticipated in the loan application.                 The computations



     on   the  original   loan   application    did  not   account    for  the  irrigation  system    curve.    VFD



     controller   specialists   may   not   be   familiar   with   pump   and   irrigation   system   characteristics,



     which are key items in estimating payback periods.



2.   In order for a VFD installation to minimize the payback period, it is important to consider the



    pump      and   motor    efficiencies.    In   the  D-12    case,  a  different   pump     will  reduce    energy



     consumption and also improve the payback period.                Care must be taken when working with



    pump suppliers, as many are unfamiliar with VFD requirements.



3.   As a result of experiences on this projects, specifications were developed for the proper initial



     estimate of payback periods, and for required VFD equipment.



4.   The   VFD   application   is   capable   of   providing   the   district   with   significant   secondary   energy



     savings (not quantified in this report) related to less travel by operations staff and improved



     on-farm irrigation efficiency through better flexibility in turning water on and off at the farm



     level.



5.   Having a VFD control can guarantee a stable water level at the discharge as long as (i) the



     controller has the correct logic, (ii) the pump curve is not intersected by the system curve in



     more than one point, and (iii) the flow rate being withdrawn from the stand does not exceed



     the   flow   rate   capacity   of   the   pumps   which   are   activated. Regarding   the   last   point,   it   is



     apparent that it is very valuable to automate all of the pumps at a station, and to have remote



     monitoring.



CEC - DEID VFD Report                                     22                     Irrigation Training and Research Center


----------------------- Page 29-----------------------

REFERENCES



1.  Albern, William F.    1986.  Variable flow pumping.     ASHRAE Journal       28: 34-6.



2.  Gibson, Ian H.    1994.  Variable-speed drives as flow control elements.      ISA Transactions     33:

    165-169.



3.  Floway Pumps.     Turbine Data Handbook.       1992.



4.  Lambeth, Jeff and Jerry Houston.       1991.  Adjustable Frequency Drives Save Energy.         Water

    Environment and Technology        3: 42-6.



5.  Process Engineering.    1994.   Variable driving conditions.   Vol. 74:   18-22.



6.  Stefanides, E. J., ed.  1991.  New pumps get power stingy.       Design News     47: 86-8.



7.  Vaillencourt, R.R.   1994.   Simple solutions to VSD measures.  Energy Engineering.

    Vol. 91(1):   45-59.



CEC - DEID VFD Report                               23                   Irrigation Training and Research Center


----------------------- Page 30-----------------------

Attachment A


----------------------- Page 31-----------------------

DEID and SCE Data


----------------------- Page 32-----------------------

                                                    Attachment B



Actual Pump Operation, TDH Calculation


----------------------- Page 33-----------------------

                                                     Attachment C



Data Logger Summary (Hrs, kWH, AF/day)


----------------------- Page 34-----------------------

Attachment D


----------------------- Page 35-----------------------

Ideal Pump Sequencing


----------------------- Page 36-----------------------

                                                        Attachment E



Historical Pump Sequencing, Savings Calculation


----------------------- Page 37-----------------------


----------------------- Page 38-----------------------

                                 Attachment F



Pump Selection Criteria


----------------------- Page 39-----------------------


----------------------- Page 40-----------------------

                               Attachment G



Estimating the Payback


----------------------- Page 41-----------------------


----------------------- Page 42-----------------------

                                              Attachment H



Requirements of VFD Installations


----------------------- Page 43-----------------------


----------------------- Page 44-----------------------

Attachment I



             Site Photos


----------------------- Page 45-----------------------

Figure I.1.         Station D12.       Pumps for the detailed study.



   Figure I.2.         Control panel for VFD at Station D12.


----------------------- Page 46-----------------------

Figure I.3.    Datalogger provided by SCE for data acquisition at Station D12.


----------------------- Page 47-----------------------

Figure I.4.    Flow meter and pressure sensor (above and to the right of the flow meter) used at

               Station D12 for data collection. The discharge pipe is for the VFD.



Figure I.5.    Shaft RPM measurement device for the VFD pump at Station D12.


----------------------- Page 48-----------------------

Figure I.6.     Overflow stand at Station D12 to which the VFD was attached.       The VFD

                maintains a constant water level in the stand, below the overflow pipe seen on the

                right hand side.


----------------------- Page 49-----------------------

                                      Attachment F



                                  Pump Selection Criteria



1.  The pump to automate with a VFD (in a location with multiple pumps supplying the same



    pipeline) is the smallest which will meet both of the following criteria:



    a.  (Flow Rate of the VFD pump



        + Sum of the flow rates of all the smaller pumps)



                    must be greater than or equal to



                            (The flow rate of the next bigger pump)



            i.e., (QVFD + [sum of all Qsmaller pumps])>= QNext bigger pump



    b.  No larger pump flow can exceed the combined   flow  of  all pumps  which  are  smaller



        than it (including the VFD at full speed).



2.  There is generally little or no energy savings associated with converting to VFD control



    for more than one pump at an installation.


----------------------- Page 50-----------------------

                                          Attachment G



                                     Estimating the Payback



                                                 for an



                    Electrical VFD (Variable Frequency Drive) Application



                  in a Pumping Plant Which Presently Spills Excess Pumpage



1.  Estimating the maximum potential savings.



    An estimate of savings requires an estimate of the historical amounts of spilled water.               If,



    for example, the spilled water is 5% of the total pumped water, then the maximum KW-Hr



    savings can be:



                      Max. KW-Hr savings = .05 x Annual KW-Hr



    If pumping amounts vary significantly from year to year, an average of three years of data



    should be used.



    The savings may be somewhat less than this (if the VFD operation puts the pump into a



    less   efficient   operating   range)   or   somewhat   more   than   this   (if   the   new   controlled   water



    level   is   lower   than   the   previous   spill   level). An   examination   of   pump   efficiencies   may



    show the greatest savings possible can be obtained by simply improving the efficiencies of



    existing pumps.



    a.  The following information is necessary in most cases:



         -  Monthly    power    bills  or  pump    test  data  providing   KW-Hr      per  Acre-Foot    (AF)



           pumped for each pump



         - Monthly hours of operation per pump



         - Monthly water deliveries (as opposed to pumped amounts)



         -   Pump   test   data,   providing Acre-Feet   (AF)   pumped   per   hour   of   operation   for   each



           pump


----------------------- Page 51-----------------------

    b.  Compute AF pumped per month for each pump



                AF

        AF = hour    x Hours of operation



    c.  From district delivery records, determine the total AF delivered to users (plus seepage



        and conveyance losses) supplied by the pumping station, by month



    d.   Sum the monthly totals



    e.  For each water year, find the % spilled



                           AF Pumped - AF Delivered

             % Spilled =                                   x 100

                                    AF Pumped



    f.  Compute the total KW-Hr savings possible



                                          % Spilled

        Annual KW-Hr savings possible =      100     x (Ann. KW-Hr consumed)



2.  Estimating   KW-Hr   which   would   have   been   consumed   if   one   of   the   pumps   had   been



    converted to VFD.



    This second step should serve as a check on the first step, in which the "possible" savings



    were computed.      By doing this computation, the effect of the overall pump efficiency of



    the selected VFD-controlled pump is accounted for.



    Again, use historical data to make these "what-if" computations.



    a.  Estimate the AF which will be pumped by the VFD unit



               (Hours) x GPM

        AF =

                     5428



             where



                     Hours   =   The   total   hours   per   year   that   water   is   delivered   from   the   pump



                         station (the VFD will operate continuously)



                     GPM = 67% of the maximum GPM of the pump with the VFD controller



                         (the actual percentage can be determined with a detailed analysis, but it



                         is probably not warranted.     The 67% provides a weighted average for a


----------------------- Page 52-----------------------

                      typical condition, accounting for the KW-Hr consumed at various flow



                      rates)



b.  Estimate the annual KW-Hrs which would be used by the VFD



                      GPM x TDH x 0.0188 x Hours

    Kw-HrsVFD =

                                Efficiency/100



         where



                  TDH = The total dynamic head of the pump, in feet.



                  Efficiency = The total efficiency of the pump (generally in the range of 40 -



                      70), which depends upon:



                           Panel Efficiency (Panel) -about 97



                           Motor   Efficiency   (Motor)   -   depends   upon   motor   size   and   model;



                               typically somewhere between 85 - 93



                           Impeller   Efficiency   (Impeller)   -   the   efficiency   of   the   impeller   and



                               bowls.   The Impeller Efficiency to use will occur at a flow rate



                               of about 67% of the maximum flow rate



                           Losses    (Losses)   -  a  measure    of  the  losses  which    occur   due   to



                               bearings; typically about 98 on a short lift.



                                         Panel x Motor x Impeller x Losses

                           Efficiency =                    106



c.  Estimate the annual KW-Hrs used by the other pumps at the station.



     1.  Estimate the AF delivered by the other pumps



                  AFother = (Total AF delivered to users plus conv. losses) - AFVFD



    2.   Compute the average pump efficiency           (Effother) for the other (non-VFD) pumps.



           The information from individual pumps will come from a pump test.                 Ideally, the



           average   efficiency   should   be   determined   by   taking   a  weighted     average    after



           considering the KW and the Hours of each pump, as anticipated after the VFD is



           installed.  In practice, a simple average may be sufficient because the pumps with


----------------------- Page 53-----------------------

          the lowest KW will be cycled on and off more often than the larger pumps, so



          they will have more hours of operation than the larger KW pumps.



    3.  Make the final KW-Hr computation for the other pumps



                     TDH x 102 x AFother

      KW-Hrother =           Effother



d.  Find the total annual KW-Hrs to be used by all pumps



    Total KW-Hr = KW-Hrother       + Kw-HrsVFD



e.  Compute the total KW-Hr savings possible



    Annual KW-Hr savings possible = (KW-Hr actually consumed - Total KW-Hr)


----------------------- Page 54-----------------------

                                          Attachment H



             Requirements for AC VFD (Variable Frequency Drive) Installations



                                             Nov. 1994



                                  Farm Energy Assistance Program



                                   California Energy Commission



The installer shall supply the VFD controller, and also be responsible for the turn-key installation



and all other electronics related to the sensor, motor, and controls.



NEMA Standards Publication No. ICS 7 shall be adhered to.        All electrical codes must be met or



exceeded.



The features listed below are required for the CEC loan program because their absence in VFD



installations has contributed to problems or failures.   They are complimentary to many standard



protective features; they shall not replace more stringent or protective features which are required



by various codes, standards, and specifications.



Features required for the VFD panel



•   Space heater for winter to prevent condensation



•   Weatherproof and dust/insect-proof enclosure



•   Fluorescent light (external mounting)



•   Water cooling heat exchanger for the panel, with a water filter having automatic flushing


----------------------- Page 55-----------------------

•   GFI receptacle (external mounting)



•   Speed potentiometer and starter for manual control



•   Remote Terminal Unit (RTU) containing a PID process controller, with communication port



    for either radio or phone.   Radio or phone must be specified.



•   Message Display of Operational Parameters and System Faults.



•   HOA switch(es).



•   Shading of the panel from direct sunlight.



Automation



•   The RTU must automate both the VFD and the other pumps which operate in parallel



    with the VFD.



Conditioning of incoming power.



•   A self-contained control power transformer must be supplied to feed the GFI, controls, and



    light. The RTU must have an isolated, conditioned power supply and battery backup.



•   Harmonic filters must be provided for each leg of incoming power of the VFD.



•   If the VFD is to be installed on an ungrounded Delta system, then a 3 phase, Delta to WYE



    isolation transformer, electrostatically  shielded,  should  be  installed  before  the  VFD  with  the



    WYE grounded with an individual grounding rod.



•   The contractor shall specify in the bid (1) the maximum overvoltage and undervoltage prior to



    trip, (2) maximum overcurrent capacity prior to trip, and (3) maximum transient protection.



Lightning Protection



Recommendations of the NEMA          Standard No. ICS7 shall be followed.


----------------------- Page 56-----------------------

Voltage and Current Distortion back to the line.



The performance specified in IEEE 519 shall be met or exceeded.                The contractor must specify



the   degree   of  harmonic    control   provided,   after  consultation   with   the  local  electrical  utility.



Performance  must  be  verified  after  installation  by  an  independent  instrumentation  contractor  or



the local utility. Such performance verification must be arranged by the contractor.



Sensors



The water level sensor shall be calibrated to within 0.2' of the water level in a stand, and shall



have an accuracy better than plus or minus 0.1 feet.



Control



Water levels must be controlled within plus or minus 0.5 feet of the target depth.



Other



Radio frequency interference filters shall be provided.



Warranty



The installation shall have a two year warranty on all parts and labor, beginning on the date of



satisfactory operation.


----------------------- Page 57-----------------------

Attachment I



             Site Photos


----------------------- Page 58-----------------------

Figure I.1.      Station D12.       Pumps for the detailed study.



   Figure I.2.      Control panel for VFD at Station D12.


----------------------- Page 59-----------------------

           Figure I.3. Datalogger provided by SCE for data acquisition at Station D12.



Figure I.4.    Flow meter and pressure sensor (above and to the right of the flow meter) used at

               Station D12 for data collection. The discharge pipe is for the VFD.


----------------------- Page 60-----------------------

          Figure I.5. Shaft RPM measurement device for the VFD pump at Station D12.



Figure I.6.     Overflow stand at Station d12 to which the VFD was attached.      The VFD

                maintains a constant water level in the stand, below the overflow pipe seen on the

                right hand side.

没有评论:

发表评论